Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 64(5): 1, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126314

RESUMO

Purpose: Familial exudative vitreoretinopathy (FEVR) and Norrie disease are examples of genetic disorders in which the retinal vasculature fails to fully form (hypovascular), leading to congenital blindness. While studying the role of a factor expressed during retinal development, T-box factor Tbx3, we discovered that optic cup loss of Tbx3 caused the retina to become hypovascular. The purpose of this study was to characterize how loss of Tbx3 affects retinal vasculature formation. Methods: Conditional removal of Tbx3 from both retinal progenitors and astrocytes was done using the optic cup-Cre recombinase driver BAC-Dkk3-Cre and was analyzed using standard immunohistochemical techniques. Results: With Tbx3 loss, the retinas were hypovascular, as seen in patients with retinopathy of prematurity (ROP) and FEVR. Retinal vasculature failed to form the stereotypic tri-layered plexus in the dorsal-temporal region. Astrocyte precursors were reduced in number and failed to form a lattice at the dorsal-temporal edge. We next examined retinal ganglion cells, as they have been shown to play a critical role in retinal angiogenesis. We found that melanopsin expression and Islet1/2-positive retinal ganglion cells were reduced in the dorsal half of the retina. In previous studies, the loss of melanopsin has been linked to hyaloid vessel persistence, which we also observed in the Tbx3 conditional knockout (cKO) retinas, as well as in infants with ROP or FEVR. Conclusions: To the best of our knowledge, these studies are the first demonstration that Tbx3 is required for normal mammalian eye formation. Together, the results provide a potential genetic model for retinal hypovascular diseases.


Assuntos
Degeneração Retiniana , Retinopatia da Prematuridade , Camundongos , Animais , Recém-Nascido , Humanos , Retina , Células Ganglionares da Retina , Vasos Retinianos , Vitreorretinopatias Exsudativas Familiares , Mamíferos , Proteínas com Domínio T
2.
Cold Spring Harb Protoc ; 2018(12)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-29789402

RESUMO

Genetically controlled cell type-specific ablation provides a reproducible method to induce regeneration that can be temporally and spatially controlled. Until recently, regeneration studies in Xenopus have relied on surgical methods to stimulate regeneration. These methods are labor intensive and not as reproducible as a genetically controlled approach. In this protocol we describe selective ablation of rod photoreceptors in the premetamorphic Xenopus laevis retina using the nitroreductase/metronidazole (NTR/Mtz) system. We use the XOPNTR transgenic line in which the Xenopus Rhodopsin promoter drives rod photoreceptor-specific expression of the bacterial enzyme, NTR. Exposure of transgenic tadpoles to Mtz for 2 d completely ablates rods by 7 d after initial Mtz exposure. Removal of Mtz allows rods to regenerate and makes rod-specific ablation reversible and amenable for regeneration studies. The protocol presented here is applicable to the selective ablation of any cell type with the use of appropriate cell type-specific promoters.


Assuntos
Técnicas de Ablação/métodos , Metronidazol/metabolismo , Nitrorredutases/metabolismo , Proteínas Recombinantes/metabolismo , Regeneração , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Experimentação Animal , Animais , Animais Geneticamente Modificados , Metronidazol/administração & dosagem , Nitrorredutases/genética , Proteínas Recombinantes/genética , Xenopus laevis
3.
Dev Biol ; 426(2): 418-428, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28438336

RESUMO

The eye field transcription factor, Six6, is essential for both the early (specification and proliferative growth) phase of eye formation, as well as for normal retinal progenitor cell differentiation. While genomic regions driving six6 optic cup expression have been described, the sequences controlling eye field and optic vesicle expression are unknown. Two evolutionary conserved regions 5' and a third 3' to the six6 coding region were identified, and together they faithfully replicate the endogenous X. laevis six6 expression pattern. Transgenic lines were generated and used to determine the onset and expression patterns controlled by the regulatory regions. The conserved 3' region was necessary and sufficient for eye field and optic vesicle expression. In contrast, the two conserved enhancer regions located 5' of the coding sequence were required together for normal optic cup and mature retinal expression. Gain-of-function experiments indicate endogenous six6 and GFP expression in F1 transgenic embryos are similarly regulated in response to candidate trans-acting factors. Importantly, CRISPR/CAS9-mediated deletion of the 3' eye field/optic vesicle enhancer in X. laevis, resulted in a reduction in optic vesicle size. These results identify the cis-acting regions, demonstrate the modular nature of the elements controlling early versus late retinal expression, and identify potential regulators of six6 expression during the early stages of eye formation.


Assuntos
Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Sequências Reguladoras de Ácido Nucleico , Xenopus laevis/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sítios de Ligação , Sistemas CRISPR-Cas , Sequência Conservada , Feminino , Genes Reporter , Larva , Masculino , RNA Guia de Cinetoplastídeos/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Transgenes , Proteínas de Xenopus/genética , Proteínas de Xenopus/fisiologia , Xenopus laevis/crescimento & desenvolvimento
4.
Dev Neurobiol ; 77(8): 1007-1020, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28188691

RESUMO

A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017.


Assuntos
Proteínas de Homeodomínio/genética , Neurônios/citologia , Medula Espinal/citologia , Xenopus laevis/anatomia & histologia , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Larva , Microscopia Confocal , Microscopia de Fluorescência , Vias Neurais/citologia , Vias Neurais/metabolismo , Neurônios/metabolismo , RNA Mensageiro/administração & dosagem , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Xenopus laevis/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
5.
Dev Biol ; 426(2): 219-235, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26996101

RESUMO

Intermediate filament proteins are structural components of the cellular cytoskeleton with cell-type specific expression and function. Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein and is up-regulated in glia of the nervous system in response to injury and during neurodegenerative diseases. In the retina, GFAP levels are dramatically increased in Müller glia and are thought to play a role in the extensive structural changes resulting in Müller cell hypertrophy and glial scar formation. In spite of similar changes to the morphology of Xenopus Müller cells following injury, we found that Xenopus lack a gfap gene. Other type III intermediate filament proteins were, however, significantly induced following rod photoreceptor ablation and retinal ganglion cell axotomy. The recently available X. tropicalis and X. laevis genomes indicate a small deletion most likely resulted in the loss of the gfap gene during anuran evolution. Lastly, a survey of representative species from all three extant amphibian orders including the Anura (frogs, toads), Caudata (salamanders, newts), and Gymnophiona (caecilians) suggests that deletion of the gfap locus occurred in the ancestor of all Anura after its divergence from the Caudata ancestor around 290 million years ago. Our results demonstrate that extensive changes in Müller cell morphology following retinal injury do not require GFAP in Xenopus, and other type III intermediate filament proteins may be involved in the gliotic response.


Assuntos
Células Ependimogliais/patologia , Gliose/fisiopatologia , Proteínas de Filamentos Intermediários/fisiologia , Retina/lesões , Proteínas de Xenopus/fisiologia , Xenopus laevis/fisiologia , Animais , Animais Geneticamente Modificados , Anuros/genética , Axotomia , Evolução Biológica , Feminino , Deleção de Genes , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/fisiologia , Gliose/patologia , Humanos , Larva , Masculino , Metronidazol/toxicidade , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Ganglionares da Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/patologia , Especificidade da Espécie , Sintenia , Urodelos/genética , Vimentina/fisiologia , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
6.
Development ; 143(19): 3560-3572, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27578778

RESUMO

Vertebrate eye formation begins in the anterior neural plate in the eye field. Seven eye field transcription factors (EFTFs) are expressed in eye field cells and when expressed together are sufficient to generate retina from pluripotent cells. The EFTF Tbx3 can regulate the expression of some EFTFs; however, its role in retina formation is unknown. Here, we show that Tbx3 represses bmp4 transcription and is required in the eye field for both neural induction and normal eye formation in Xenopus laevis Although sufficient for neural induction, Tbx3-expressing pluripotent cells only form retina in the context of the eye field. Unlike Tbx3, the neural inducer Noggin can generate retina both within and outside the eye field. We found that the neural and retina-inducing activity of Noggin requires Tbx3. Noggin, but not Tbx3, induces Pax6 and coexpression of Tbx3 and Pax6 is sufficient to determine pluripotent cells to a retinal lineage. Our results suggest that Tbx3 represses bmp4 expression and maintains eye field neural progenitors in a multipotent state; then, in combination with Pax6, Tbx3 causes eye field cells to form retina.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Fator de Transcrição PAX6/metabolismo , Retina/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas de Xenopus/metabolismo , Regiões 5' não Traduzidas/genética , Regiões 5' não Traduzidas/fisiologia , Animais , Proteína Morfogenética Óssea 4/genética , Hibridização In Situ , Fator de Transcrição PAX6/genética , Plasmídeos/genética , Proteínas com Domínio T/genética , Proteínas de Xenopus/genética , Xenopus laevis
7.
J Ophthalmic Vis Res ; 9(1): 126-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24982746
8.
J Vis Exp ; (88)2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24962702

RESUMO

Measurement of the visual function in the tadpoles of the frog, Xenopus laevis, allows screening for blindness in live animals. The optokinetic response is a vision-based, reflexive behavior that has been observed in all vertebrates tested. Tadpole eyes are small so the tail flip response was used as alternative measure, which requires a trained technician to record the subtle response. We developed an alternative behavior assay based on the fact that tadpoles prefer to swim on the white side of a tank when placed in a tank with both black and white sides. The assay presented here is an inexpensive, simple alternative that creates a response that is easily measured. The setup consists of a tripod, webcam and nested testing tanks, readily available in most Xenopus laboratories. This article includes a movie showing the behavior of tadpoles, before and after severing the optic nerve. In order to test the function of one eye, we also include representative results of a tadpole in which each eye underwent retinal axotomy on consecutive days. Future studies could develop an automated version of this assay for testing the vision of many tadpoles at once.


Assuntos
Comportamento Animal/fisiologia , Percepção Visual/fisiologia , Xenopus laevis/fisiologia , Animais , Nervo Óptico/fisiologia , Nervo Óptico/cirurgia , Visão Ocular/fisiologia
9.
Dev Biol ; 384(1): 26-40, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24095902

RESUMO

Proliferation and differentiation are tightly controlled during neural development. In the embryonic neural plate, primary neurogenesis is driven by the proneural pathway. Here we report the characterization of Maturin, a novel, evolutionarily conserved protein that is required for normal primary neurogenesis. Maturin is detected throughout the early nervous system, yet it is most strongly expressed in differentiating neurons of the embryonic fish, frog and mouse nervous systems. Maturin expression can be induced by the proneural transcription factors Neurog2, Neurod1, and Ebf3. Maturin overexpression promotes neurogenesis, while loss-of-function inhibits the differentiation of neuronal progenitors, resulting in neural plate expansion. Maturin knockdown blocks the ability of Neurog2, Neurod1, and Ebf3 to drive ectopic neurogenesis. Maturin and Pak3, are both required for, and can synergize to promote differentiation of the primary neurons in vivo. Together, our results suggest that Maturin functions during primary neurogenesis and is required for the proneural pathway to regulate neural differentiation.


Assuntos
Diferenciação Celular , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas de Xenopus/genética , Proteínas de Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
10.
Genesis ; 50(3): 325-32, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22337567

RESUMO

Transgenesis is an essential, powerful tool for investigating gene function and the activities of enhancers, promoters, and transcription factors in the chromatin environment. In Xenopus, current methods generate germ-line transgenics by random insertion, often resulting in mosaicism, position-dependent variations in expression, and lab-to-lab differences in efficiency. We have developed and tested a Xenopus FLP-FRT recombinase-mediated transgenesis (X-FRMT) method. We demonstrate transgenesis of Xenopus laevis by FLP-catalyzed recombination of donor plasmid cassettes into F(1) tadpoles with host cassette transgenes. X-FRMT provides a new method for generating transgenic Xenopus. Once Xenopus lines harboring single host cassettes are generated, X-FRMT should allow for the targeting of transgenes to well-characterized integration site(s), requiring no more special reagents or training than that already common to most Xenopus labs.


Assuntos
Marcação de Genes/métodos , Técnicas de Transferência de Genes , Xenopus laevis/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , DNA Nucleotidiltransferases/metabolismo , Feminino , Ordem dos Genes , Genes Reporter , Vetores Genéticos/genética , Masculino , Recombinação Genética , Transgenes
11.
Invest Ophthalmol Vis Sci ; 52(1): 364-73, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20720220

RESUMO

PURPOSE: Amphibian retinas regenerate after injury, making them ideal for studying the mechanisms of retinal regeneration, but this leaves their value as models of retinal degeneration in question. The authors asked whether the initial cellular changes after rod loss in the regenerative model Xenopus laevis mimic those observed in nonregenerative models. They also asked whether rod loss was reversible. METHODS: The authors generated transgenic X. laevis expressing the Escherichia coli enzyme nitroreductase (NTR) under the control of the rod-specific rhodopsin (XOP) promoter. NTR converts the antibiotic metronidazole (Mtz) into an interstrand DNA cross-linker. A visually mediated behavioral assay and immunohistochemistry were used to determine the effects of Mtz on the vision and retinas of XOPNTR F1 tadpoles. RESULTS: NTR expression was detected only in the rods of XOPNTR tadpoles. Mtz treatment resulted in rapid vision loss and near complete ablation of rod photoreceptors by day 12. Müller glial cell hypertrophy and progressive cone degeneration followed rod cell ablation. When animals were allowed to recover, new rods were born and formed outer segments. CONCLUSIONS: The initial secondary cellular changes detected in the rodless tadpole retina mimic those observed in other models of retinal degeneration. The rapid and synchronous rod loss in XOPNTR animals suggested this model may prove useful in the study of retinal degeneration. Moreover, the regenerative capacity of the Xenopus retina makes these animals a valuable tool for identifying the cellular and molecular mechanisms at work in lower vertebrates with the remarkable capacity of retinal regeneration.


Assuntos
Modelos Animais de Doenças , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/patologia , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Calbindinas , Contagem de Células , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Regulação Enzimológica da Expressão Gênica/fisiologia , Genótipo , Hibridização in Situ Fluorescente , Marcação In Situ das Extremidades Cortadas , Masculino , Metronidazol/toxicidade , Microscopia de Fluorescência , Neuroglia/patologia , Nitrorredutases/genética , Nitrorredutases/metabolismo , Regeneração/fisiologia , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Retinose Pigmentar/enzimologia , Proteína G de Ligação ao Cálcio S100/metabolismo , Transtornos da Visão/induzido quimicamente , Transtornos da Visão/patologia , Xenopus laevis
12.
Curr Top Dev Biol ; 93: 29-60, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20959162

RESUMO

Vertebrate eyes begin as a small patch of cells at the most anterior end of the early brain called the eye field. If these cells are removed from an amphibian embryo, the eyes do not form. If the eye field is transplanted to another location on the embryo or cultured in a dish, it forms eyes. These simple cut and paste experiments were performed at the beginning of the last century and helped to define the embryonic origin of the vertebrate eye. The genes necessary for eye field specification and eventual eye formation, by contrast, have only recently been identified. These genes and the molecular mechanisms regulating the initial formation of the Xenopus laevis eye field are the subjects of this review.


Assuntos
Olho/embriologia , Xenopus laevis , Animais , Movimento Celular , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Morfogênese/fisiologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomia & histologia , Xenopus laevis/embriologia
13.
J Vis Exp ; (39)2010 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-20479704

RESUMO

Many proteins play a dual role in embryonic development. Those that regulate cell fate determination in a specific tissue can also affect the development of a larger region of the embryo. This makes defining its role in a particular tissue difficult to analyze. For example, noggin overexpression in Xenopus laevis embryos causes the expansion of the entire anterior region, including the eye(1,2). From this result, it is not known if Noggin plays a direct role in eye determination or that by causing an expansion of neural tissue, Noggin indirectly affects eye formation. Having this complex phenotype makes studying its eye-specific role in cell fate determination difficult to analyze. We have developed an assay that overcomes this problem. Taking advantage of the pluripotent nature of the Xenopus laevis animal cap (3), we have developed an assay to test the ability of gene product(s), like noggin or the eye field transcription factors (EFTFs), to transform caps into particular tissue or cell types by transplanting this tissue onto the side of the embryo (4). While we have found either Noggin protein treatment or a collection of transcription factors can determine retinal cell fate in animal caps, this procedure could be used to identify gene product(s) involved in specifying other tissues as well.


Assuntos
Embrião não Mamífero/transplante , Xenopus laevis/embriologia , Animais , Feminino , Masculino , Microinjeções/métodos , RNA/química
14.
PLoS Biol ; 7(8): e1000174, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19688031

RESUMO

Pluripotent cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells are the starting point from which to generate organ specific cell types. For example, converting pluripotent cells to retinal cells could provide an opportunity to treat retinal injuries and degenerations. In this study, we used an in vivo strategy to determine if functional retinas could be generated from a defined population of pluripotent Xenopus laevis cells. Animal pole cells isolated from blastula stage embryos are pluripotent. Untreated, these cells formed only epidermis, when transplanted to either the flank or eye field. In contrast, misexpression of seven transcription factors induced the formation of retinal cell types. Induced retinal cells were committed to a retinal lineage as they formed eyes when transplanted to the flanks of developing embryos. When the endogenous eye field was replaced with induced retinal cells, they formed eyes that were molecularly, anatomically, and electrophysiologically similar to normal eyes. Importantly, induced eyes could guide a vision-based behavior. These results suggest the fate of pluripotent cells may be purposely altered to generate multipotent retinal progenitor cells, which differentiate into functional retinal cell classes and form a neural circuitry sufficient for vision.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Pluripotentes/citologia , Retina/citologia , Fatores de Transcrição/metabolismo , Animais , Técnicas de Cultura de Células , Olho/anatomia & histologia , Olho/citologia , Olho/crescimento & desenvolvimento , Humanos , Neurônios/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Medicina Regenerativa , Retina/crescimento & desenvolvimento , Transplante de Células-Tronco , Fatores de Transcrição/genética , Xenopus laevis/embriologia
15.
Dev Dyn ; 235(4): 1133-41, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16470628

RESUMO

Members of the LIM homeodomain (LIM-HD) family of proteins are double zinc-finger containing transcription factors with important functions in pattern formation and cell lineage determination. The LIM-HD family member Lhx2 is required for normal eye, liver, and central nervous system formation. Lhx2(-/-) mice lack eyes, and experiments in Xenopus predict that Lhx2 forms a regulatory network with other eye field transcription factors to specify the eye field during eye formation. Here, we describe the structure and developmental expression pattern of the Xenopus laevis homologue, XLhx2. We show that XLhx2 shares significant amino acid sequence identity with other vertebrate Lhx2 proteins and Drosophila apterous (ap). The expression patterns of XLhx2 in the early neural plate and during eye development are consistent with a role in eye field specification and retinal differentiation. Despite highly similar expression patterns in the mouse and Xenopus central nervous system, divergent expression patterns were also observed. Phylogenetic analysis confirmed the identity of the isolated cDNA as a Xenopus ortholog of Lhx2. Therefore, in spite of structural similarities, the mouse and Xenopus Lhx2 expression patterns differ, suggesting potential functional differences in these species.


Assuntos
Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Vertebrados/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sequência Conservada , DNA/genética , DNA/isolamento & purificação , Olho/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Proteínas com Homeodomínio LIM , Dados de Sequência Molecular , Sinais de Localização Nuclear , Filogenia , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vertebrados/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/isolamento & purificação , Xenopus laevis/genética , Xenopus laevis/metabolismo
16.
Development ; 130(21): 5155-67, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12944429

RESUMO

Several eye-field transcription factors (EFTFs) are expressed in the anterior region of the vertebrate neural plate and are essential for eye formation. The Xenopus EFTFs ET, Rx1, Pax6, Six3, Lhx2, tll and Optx2 are expressed in a dynamic, overlapping pattern in the presumptive eye field. Expression of an EFTF cocktail with Otx2 is sufficient to induce ectopic eyes outside the nervous system at high frequency. Using both cocktail subsets and functional (inductive) analysis of individual EFTFs, we have revealed a genetic network regulating vertebrate eye field specification. Our results support a model of progressive tissue specification in which neural induction then Otx2-driven neural patterning primes the anterior neural plate for eye field formation. Next, the EFTFs form a self-regulating feedback network that specifies the vertebrate eye field. We find striking similarities and differences to the network of homologous Drosophila genes that specify the eye imaginal disc, a finding that is consistent with the idea of a partial evolutionary conservation of eye formation.


Assuntos
Proteínas do Olho/metabolismo , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Morfogênese , Fatores de Transcrição/metabolismo , Animais , Padronização Corporal , Proteínas de Transporte , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Olho/metabolismo , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Humanos , Hibridização In Situ , Proteínas com Homeodomínio LIM , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Otx , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Proteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomia & histologia , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/metabolismo , Proteína Homeobox SIX3
17.
Development ; 130(7): 1281-94, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12588845

RESUMO

Photoreceptor and bipolar cells are molecularly related cell types in the vertebrate retina. XOtx5b is expressed in both photoreceptors and bipolars, while a closely related member of the same family of transcription factors, XOtx2, is expressed in bipolar cells only. Lipofection of retinal precursors with XOtx5b biases them toward photoreceptor fates whereas a similar experiment with XOtx2 promotes bipolar cell fates. Domain swap experiments show that the ability to specify different cell fates is largely contained in the divergent sequence C-terminal to the homeodomain, while the more homologous N-terminal and homeodomain regions of both genes, when fused to VP16 activators, promote only photoreceptor fates. XOtx5b is closely related to Crx and like Crx it drives expression from an opsin reporter in vivo. XOtx2 suppresses this XOtx5b-driven reporter activity providing a possible explanation for why bipolars do not express opsin. Similarly, co-lipofection of XOtx2 with XOtx5b overrides the latter's ability to promote photoreceptor fates and the combination drives bipolar fates. The results suggest that the shared and divergent parts of these homologous genes may be involved in specifying the shared and distinct characters of related cell types in the vertebrate retina.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras/embriologia , Retina/embriologia , Transativadores/metabolismo , Fatores de Transcrição , Animais , Genes Reporter , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Otx , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Opsinas de Bastonetes/genética , Transativadores/genética , Xenopus , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...